Explaining deep adaptive programs via reward decomposition


Adaptation Based Programming (ABP) allows programmers to employ “choice points” at program locations where they are uncertain about how to best code the program logic. Reinforcement learning (RL) is then used to automatically learn to make choice-point decisions to optimize the reward achieved by the program. In this paper, we consider a new approach to explaining the learned decisions of adaptive programs. The key idea is to include simple program annotations that define multiple semantically meaningful reward types, which compose to define the overall reward signal used for learning. Using these reward types we define the notion of reward difference explanations (RDXs), which aim to explain why at a choice point an alternative A was selected over another alternative B An RDX gives the difference in the predicted future reward of each type when selecting A versus B and then continuing to run the adaptive program. Significant differences can provide insight into why A was or was not preferred to B. We describe a SARSA-style learning algorithm for learning to optimize the choices at each choice point, while also learning side information for producing RDXs. We demonstrate this explanation approach through a case study in a synthetic domain, which shows the general promise of the approach and highlights future research questions.

IJCAI/ECAI workshop on explainable artificial intelligence
Anurag Koul
Anurag Koul
PostDoctoral Researcher