Explaining Deep Adaptive Programs via

Reward Decompaosition

Oregon State

1. Adaptive Programs

= Employ choice points to replace uncertain logic
In the code

= Train choice points via Reinforcement Learning
to maximize assigned reward

= Decisions at choice points are learned via deep
neural networks

state = env.reset()
move = Adaptive(choices = [UP, DOWN, LEFT,RIGHT])
while not done:
direction = move.choose(state)
state, reward, done = env.step(direction)
move.adapt(reward)

2. Example Environment

= Goal: Collect maximum number of fruits

* Fruits have fixed location
= Lightning kills the agent
= Horizon: 100 steps

Lightning

Fruit [Agent

(a) (b) 0 5 10
State Frames without (a) and Lightning Occurrence Probability
With (b) lightning of Cells

S (JELEV]

= Why choice A was selected over other choices?

= Selected choice has the maximum expected future
award given by Q(s, A)

» Each adaptive variable Is associated with a Q-function

Selected Action

Up Right

Down Left

Q-values for Frame (a)

* Insufficient Explanation by single Q-value

 What factors were responsible for the Q-value?
Fruits? Lightning?

4. Explanation via Reward Decomposition

= Reward can be broken down into multiple reward
types, each corresponding to semantically distinct
ways of acquiring reward

= Total Reward = Each fruit reward + Lightning cost
= Distinct Q-functionis learned for each reward type

state = env.reset()
move = Adaptive(choices = [UP, DOWN, LEFT, RIGHT])
while not done:
direction = move.choose(state)
state, rewards, done = env.step(direction)
for typedReward in rewards:
move.adapt(typedReward)

Selected Action (1, 1)

(1, 10)

(2, 8)

(4, 2)

(5, 10)

(8, 1)

(8, 8)

(10, 5)
Lightning Strike

Up Right Down Left

Decomposed Q-values for each reward type in Frame (a)

5. Reward Difference Explanation (RDX])

= Why choice A was selected over choice B ?

= Reward-type-indexed difference between the
decomposed rewards of two actions

ATL’(S'A! B) — QT[(SJA) o QTL‘(S'B)

(2, 8)

(8, 8)

Lightning Strike
(5, 10)

(10, 5)

(1, 10)

(1, 1)

(8, 1)

(4, 2)

S ENENEEENERE

A (s,Right, Left)

6. Minimum Sufficient Explanation(MSX]

= The minimal subset of A, (s, A, B) whose sum of rewards
exceeds the sum of all negative rewards from A (s, 4, B).
U (s,A,B)=S € Sub™(Q) : X(S) > R (Q) A |S|is minimal
where, Sub™(Q) = {S € Q| (r,x) € S > x > 0}

Q =A,(s,AB)

R™(Q) = Z({(rx) € Q A x < 0}),

S ENEEEEEDE
e e e e [
o w g

1)
2]

U, (s,Right, Left)

	

